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Abstract--The periodically fully developed laminar heat transfer and fluid flow characteristics of an array 
of uniform plate length, aligned at angles to the air flow direction have been investigated numerically in 
the range Re = 50-2300 using body-fitted coordinate system. Multisurface transformation is used in the 
grid generation in order to retain the periodic corresponding relations of the surfaces or lines in both 
physical and computational spaces. The computed results exhibit good agreement with the experimental 
data available in the literature. The results also show that both the intensity of heat transfer and the 

pressure drop increase with the increases in oblique angle and plate length. 

INTRODUCTION 

Flow interruption at periodic intervals is a well-known 
technique for enhancing heat transfer, and the louv- 
ered fin and off-:set fin surfaces are examples of its 
applications, which have been widely used in auto- 
mobiles, chemical engineering, refrigerators, etc. 
Numerous experimental and numerical studies have 
been carried owl on heat transfer and fluid flow 
characteristics for such kinds of configurations. It has 
been found experimentally that after passing several 
cycles, typically 3-5, the fluid flow and heat transfer 
become periodically fully developed [1-5]. A knowl- 
edge of fluid flow and heat transfer in the fully 
developed region is required in the design and per- 
formance evaluation for most of the engineering appli- 
cations. 

Sparrow et  al. 116, 7] and Patankar et al. [8] assumed 
the plate thickness to be negligible and obtained 
numerical solutiens for laminar flow and heat transfer 
for the interrupted plates sit in the flow field. Patankar 
and Prakash [9] analysed the effect of plate thickness 
on the laminar flow and heat transfer in interrupted- 
plate passages. In all these plate arrangements, the 
boundaries of the solid plates were aligned with the 
Cartesian coordinates, therefore the discretization of 
the computation domain could be conducted easily. 
As for the cases where boundaries of the solid plates 
are not aligned with the Cartesian coordinates, the 
numerical analysis becomes more complicated in 
generating an appropriate grid system. 

Asako and Faghri [10] carried out a numerical pre- 
diction for an array of interrupted plates positioned 
obliquely to the flow direction, with an algebraic coor- 
dinate transformation technique to map the irregular 
solution domain onto a rectangle, the thickness of 
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plate being neglected. Pang et  al. [11] performed 
numerical investigations on an array of interrupted 
plates positioned convergently~livergently along the 
flow direction in the Cartesian coordinates using the 
blocking-off technique and the stepwise succession to 
simulate the plate boundary. 

The purpose of the present study is to carry out a 
numerical analysis of the heat transfer and fluid flow 
characteristics of  arrays with uniform plate length 
aligned at angles to the flow direction in a body-fitted 
coordinate system, to examine the feasibility of the 
mutual replacement technique for treating the per- 
iodic boundary conditions in just one-cycle domain in 
the computational space, and to perform a parametric 
study of the effects of the Reynolds number, the 
oblique angle, 0, and the ratio of plate length to trans- 
verse space between plates, L / T  o , on the pressure drop 
and heat transfer for the arrays that have been exper- 
imentally studied by Zhang and Lang [3]. The numeri- 
cal prediction will be compared with experimental 
results so to make a general evaluation of  the grid 
generation analysis technique adopted in this paper. 

PHYSICAL MODEL AND MATHEMATICAL 
FORMULATION 

The problem to be analysed is schematically shown 
in Fig. 1, an array of uniform length is positioned 
obliquely to the flow direction. The engineering back- 
ground of this study is the heat transfer and fluid flow 
in louvered fins used in automobile and other motor 
vehicle radiators, where the fins are formed by slitting 
a continuous thin copper plate and then turning the 
slitted segments at an angle. In this case, Lp = L. The 
geometric parameters of array studied are copied from 
Zhang and Lang [3], as listed in Table 1. 

The analysis is based on the following assumptions : 
(1) the fluid properties are constant; (2) the flow and 
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Cp 

f 
hx 

J 

L 
Mr 

Nu 

P 
Pr 
qx 
Re 
T 
7;  

Ui 

U , V  

NOMENCLATURE 

specific heat of constant pressure 
pressure drop factor 
local heat transfer coefficient 
[W m -2 °c--l] 
Jacobean of coordinate 
transformation 
plate length [m] 
relative maximum mass flow rate 
unbalance in one control volume 
Nusselt number 
pressure, Pa 
Prandtl number 
local heat flux [W m -2] 
Reynolds number 
temperature [°C] 
transverse spacing between two 
adjacent plates [m] 
bulk temperature [°C] 
wall temperature [°C] 
velocity components in Cartesian 
coordinates [m s-~1 
contravariant velocity components 
in ~ and ~/direction [m S -l] 

X 

X i 

distance from leading point along the 
plate surface [m] 
Cartesian coordinates [m]. 

Greek symbols 
~, fl, 7 metric coefficients 
6 
0 
® 

2 

P 

P 

thickness of plate [m] 
oblique angle, degree 
dimensionless temperature 
thermal conductivity [W m -a °C-q  
fluid dynamic viscosity [kg m - l  s 1] 
coordinates in transformed plane 
fluid density [kg m -3] 
general dependent variable. 

Subscripts 
m mean 
4, ~/ partial derivatives with respect to 

and r/. 

Superscripts 
* value of the previous iteration. 

heat transfer are in steady state, laminar and period- 
ically fully developed; (3) the body force and the 
dissipation term are neglected. The computation 
domain is chosen as in Fig. 1 (b). The fluid flow and 
heat transfer can be specified by the following equa- 
tions with Cartesian tensor notation : 

continuity equation 

~x~ (pu,) = 0 (1) 

momentum equations 

a ( ~uA ~p 
~ ( p u , u k )  = ~ x i t l t ~ x J - - ~ x k ,  k =  t ,2  (2) 

energy equation 

c~ x~ ~x~x ~ \ a x , ) (3) 

boundary conditions : 

U(x,y)IAE = U(X,y)I , ,  

V(x,y)IAE = v(x,y)lon 

®(x,y)IAE = ®(x,y)IDn (4) 

U(x, y)IBc = u(x, y ) lm  

V(x,y)IBc = V(x,y)IF~ 

T(X, Y) IBc = T(x, Y) IFG. (5) 

In addition, the following conditions must be satisfied 
at the surfaces of the solid plates 

u ( x , y )  = 0 

v ( x , y )  = 0 

T(x,y)  = Tw. (6) 

The dimensionless temperature in equation (4) is 
defined as : 

O(x, y) = (T(x ,y)  -- Tw)/(Tb(X) - Tw). (7) 

Attention is turned to coordinate transformation 
and grid generation. The continuity equation and the 
conservation form of the transport equation for a 
general dependent variable in a generalized coordinate 
system ({. tt) can be written as follows : 

(p u) + ~ (p v) = o (8) 

Lfr+ a0 
+ OriL j ( - f l - ~  + 7 ~ ) ] + J S +  (9) 

where S ,  is the source term in computational space 
and the contravariant velocities U, V and the geo- 
metric parameters are given as 

U = u y , - v x , ,  V =  vx~--uy¢ (10) 

J =  xcy~--x~y~, fl = xcx.+y~y.  (11) 

2 2 = x , + y , .  y = x ~ + y ~ .  (12) 
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Fig. 1. Schematic diagram of the configuration studied: (a) interrupted plate array; (b) computation 
domain. 

Table 1. Geometric parameters (6 = 1.5 ram, Tp = 30 mm) 

Case 0 (degree) Lp (mm) L (ram) 

1 10 30 30 
2 15 30 30 
3 20 30 30 
4 25 30 30 
5 30 30 30 
6 35 30 30 
7 25 37.5 37.5 
8 25 22.5 22.5 

The corresponding grid generation scheme used is the 
multisurface transformation [13], of  which the details 
can be found in references [13, 14]. 

A typical grid system generated by this method is 
shown in Fig. 2. It should be noted that the sharp 
corners of  the domain in physical space are not  
approximated with smooth curves to prevent singu- 
larities as was done in Asako and Faghri  [10]. To 
prevent the singularities at the sharp corners special 
care was taken in calculating the geometrical deriva- 
tives such as x~ and y~, such that the values of  x~ and 
y~ at the points near the corner were calculated by the 
backward or  forward difference according to the point 



3056 L.B. WANG and W. Q. TAO 

I I I I I  

Fig. 2. Typical grid mesh used in computation. 

position relative to the corner, and the derivatives of 
x¢, y¢ at the corner points were calculated according to 
the derivatives of the points situated aside the corner 
points. The simple arithmetic mean was used here. 

NUMERICAL PROCEDURE 

The discretization of the transport equations in the 
computational domain was performed on a staggered 
grid by using the finite-volume approach. A SIMPLE- 
like solution algorithm in the computational domain 
was adopted to deal with the linkage between pressure 
and velocities, the details of which may be found in 
Shyy [15] and Tao [16]. Because the grid is non- 
orthogonal, the pressure correction equations contain 
cross derivatives, which lead to a nine-point formu- 
lation. In this study the cross derivatives were incor- 
porated into the source term, and a five-point solver 
was used to solve the algebraic equations. 

Attention should be paid to the implementation of 
the periodic boundary conditions in the com- 
putational domain. Since the solution domain is 
exactly one cycle, the adoption of the mutual replace- 
ment method as conducted by Amano et al. [17] and 
Xin and Tao [18] needs some special treatment. In 
this paper, the following linear interpolation was used 
for the implementation of the periodic boundary con- 
ditions in the ~/direction : 

q~(i, 1) = ~b(i, M,) = (~b*(i, 2) + qS*(i, M2))/2 

(iF ~< i ~< ic) (13) 

where '*' represents the previous iteration, and M~, 
M2 are the last and last but one indices in the r/direc- 
tion. This implies that after each iteration, the arith- 

metic mean value of q~(i, 2) and q~(i, M2) is assigned 
to the top and bottom boundaries and serves as the 
boundary condition for the next iteration. 

The following linear interpolation was used for the 
implementation of the periodic boundary conditions 
in the ~ direction : 

(~(~A-E, ~ )  = (~(~D-H, /1) 

= ( ~ * ( ~ 1 _ 1 , q ) - - [ - ~ * ( ~ 2 _ 2 , ? / ) ) / 2 . 0  ( 1 4 )  

where ~1-1 and ~2-2 are positions corresponding to the 
lines 1-1 and 2-2 in Fig. 3. As far as the temperature 
is concerned, the periodic condition is valid only for 
the dimensionless value. Thus, the dimensionless tem- 
peratures at the cycle inlet and outlet for next iteration 
were taken as the interpolation values determined 
below, 

, / / T ( ~ , _ I , / 7 )  - -  T w T(~2_2,  r/) - Tw'~ . . . .  

The local temperatures at the cycle inlet and outlet 
were calculated, respectively, by 

T(~AE,~/) = Tw+®[Tb(~AE)--TwI (16) 

T(~DH,r/) = Tw+®[Tb(~DH)--Tw]. (17) 

The local heat transfer coefficient was determined by 

hx = qx 
( T b  (~DH)  - -  Tb ( ~ A E ) ) /  

(In (Tw - Tb(~AE)) --In (Tw- Tb (~DH))) 

(18) 
The bulk temperature Tb(~) was defined as 

(19) 

while the local heat flux was computed by Fourier's 
law of heat conduction. The value of heat flux at the 
plate surface was determined by 

=_27T,--flT¢, ~ , 
q n l  

o N /  / = n~ 

- 2  ?T"-flT¢, ~ ~ (20) q.2 
oN/ / = ~/M, 

The average heat flux of the plate surface was there- 
fore determined by 

PeF Pea 
[ q" ,x /~d¢+[  q.,x//?d¢ 
dee d ~  

/~B /~D 

(21) (% NH qm Sd +J oSd  
Ns PeP 

d~A c 
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Fig. 3. Computation domain with virtual cells. 
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Then, the plate-average heat transfer coefficient of one 
cycle was computed by 

h m = qna/{[Tb(~DH~P- Tb(¢AE)]/ 

[ln [Tw-- T~(~AE)]--ln [Tw-- Tb(~On)]]}. (22) 

The Reynolds number  and the plate-average Nusselt 
number  were defined as 

Re = OumL/# Nu = hmL/2. (23) 

The per-plate pressure drop factor of one cycle was 
determined as 

f =  [pm(~AE)--pm((Diq)l/(pU2m/2). (24) 

The velocity field convergence criterion used in this 
study was that the' maximum relative mass flow rate 
unbalance in one control volume, Mr, was less than 
10 -5 . The value of Mr is calculated by 

I)/r" Mr = MAX (Ib pU(¢AE, tl) dtl 
• / r / 1  

(25) 

where b is the residual of mass flow rate for a control 
volume in the computational  domain. U is the con- 
trovariant velocity. The number  of iterations needed 
to obtain a converged velocity field is usually less than 
2500. 

A preliminary computat ion was performed on two 
grid-systems (40 x 39, 57×45)  to assure the grid 
independence of the numerical solution for the case 
L = 3 0  mm, L / T  r,= 1, R e = 5 0 0 .  The difference 
between the two solutions of Nu was 1.3% and that 
of  f was 0.5% (see Table 2). 

Table 2. Grid independence study (L = 30 mm, 0 = 35 °, 
L/Tp = 1, Re = 500) 

Grid size Nu f 

40 x 39 20.6656 2.4087 
57 x 45 20.9430 2.4213 

RESULTS AND DISCUSSION 

Flow field 
The typical predicted velocity field is shown in Fig. 

4. The configuration of L/Tp = 1, and 0 = 25 ° (Case 
4) is commonly used in engineering applications. The 
velocity fields plotted in Fig. 5 show how the flow 
pattern changes with increasing 0 at the same Reyn- 
olds number  (1500), while in Fig. 6, the effect of  L/Tp 
at 0 = 25 ° and Re = 1500 is presented. It is better to 
imagine that the right-hand part of  the computat ion 
domain, C D H G  in Fig. 1 (b) has been moved to the 
shaded area of Fig. 1 (a), so that a complete cycle of 
the plate array can be formed, just  like the left part 
of  Fig. 4(b). Hence, the characteristics of flow fields 
shown in Figs. 4~5 may be summarized as follows. 
First, the velocity is approximately one-dimensional 
on line 1-1 in Fig. 1 (a), which is a center-line or more 
exactly a pseudo-center-line. Secondly, there are two 
recirculating flows in a one-cycle flow field, one 
located in the top-left region and the other one located 
in the bottom-right corner. This is quite reasonable. 
The upper half of  one-cycle in Fig. 4(b), that is, the 
flow region that is located over the line 1-1 is that of 
a convergent two-dimensional nozzle, for which the 
recirculating zone is usually located in the inlet region 
of the nozzle, while the lower half is just  that of  a 
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Fig .  5. F l o w  p a t t e r n s  a t  d i f f e r e n t  a n g l e s  (L/Tp = 1, Re = 1500)  : (a)  O = 15 ° ; (b )  O = 25 ° ; (c) ® = 35 °. 
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Fig. 6. Flow patterns at different L/To(Re= 1500, ® = 25°): (a) L/T o =0.75; (b) L/To= 1.0; (c) 
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Fig. 7. Numerica|]y predicted pressure drop factor and Nus- 
selt number for different oblique angle: (a ) /vs  Re; (b) Nu 

vs Re. 
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Fig. 8. Numerically predicted pressure factors and Nusselt 
numbers for different L/To: (a) f v s  Re; (b) Nu vs Re. 

divergent nozzle, for which a recirculating flow is 
expected to occur near the exit of the nozzle. Third, it 
can be seen from the figures that, with increasing 
Reynolds number, attack angle and L/Tp, the sizes of 
the two recirculating zones increase. This variation 
will surely affect both the pressure-drop factor and 
the plate-average Nusselt number. 

Pressure drop factor, f 
The calculated pressure drop factors for different 

configurations, listed in Table 1, are shown in Figs. 
7(a) and 8(a). Frem these results, the following fea- 
tures may be noted. First, in the low Reynolds number 
region (approximately less than 100), the variation o f f  

with Re has the same trend as that of a fully developed 
laminar flow in a continuous duct, i.e.fdecreases with 
the increase in Reynolds number. This is the flow 
region where the pressure drop is mainly caused by 
the surface friction effect. The form drag of the plate 
(including the inlet and outlet effects) gradually 
becomes significant with further increase in Reynolds 
number, and finally, it becomes predominant, leading 
to a constant value o f f  for each case. Secondly, the 
higher the angle 0, the larger the value of f i n  the entire 
range of Reynolds number studied. This implies that 
even at very low Reynolds number (about 50), the 
form drag of the plate still has some effect on the total 
pressure drop of the cycle. Thirdly, for a given L~ Tp, 
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the starting Reynolds number beyond which the value 25o 
of f becomes constant is dependent on Re. For 
0 = 35 °, this Reynolds number is about 300, while for 200 - 
0 = 10 °, it increases to about 1000. Fourthly, at the 15o 
same 0 and Tp, the increase in L leads to an increase 
in both the friction effect and the plate form drag, ~100 
thus the per-plate pressure drop factor increases. 

50 

0 
0.0 

Averaye heat transfer 
The average heat transfer results are presented in 

Fig. 7(b) and Fig. 8(b) in terms of the plate-average 
Nusselt number. It can be seen that, in the low Reyn- 
olds number region (Re <<, 100), the plate-average 
Nusselt number almost remains constant, showing the 
character of fully developed laminar heat transfer in 
a continuous duct. This was also revealed by Asako 
and Faghri [10] and by Pang et al. [11]. As Re > 100, 
the increase in Reynolds number leads to an appreci- 
able increase in Nusselt number. For the case 
L/Tp = 1, in the entire range of Reynolds number 
studied, the larger the angle 0, the higher the plate- 
average Nusselt number. However, in the low Reyn- 
olds number region, the ratio of Nu for 0 = 35 ° and 
for 0 = 10 ° is much less than that in the high Reynolds 
number region (about 1.3 vs 3.0), indicating the strong 
effect of the recirculating flow on heat transfer 
enhancement. On the other hand, for the case 0 = 25 ° 
the ratio of Nusselt numbers for L/Tp = 1.25 and for 
L/Tp = 0.75 is somewhat larger than that in the higher 
Reynolds number region (about 2.0 to 1.5). This 
implies that in the high Reynolds number region, the 
plate-average heat transfer coefficient for a short plate 
is actually larger than that of a long plate, since the 
characteristic length of the long plate is about 1.67 
times that of the short plate. 

Local heat transfer coefficients 
The local heat transfer coefficients of the windward 

and leeward surfaces are shown in Fig. 9 for case 4 at 
two Reynolds numbers, and in Fig. 10 the results for 
cases 1, 3 and 6 at Re = 1000 are presented. Here the 
leeward surface consists of the ab and bc segments in 
Fig. 1 (a) and the windward side of the plate consists 
ofad and dc. The x coordinate in Figs. 9 and 10 is a 
local one along the plate surface, for both the wind- 
ward and leeward sides. It can be found that for the 
leeward surface, the local heat transfer coefficient has 
a very significant increase with x in the start region, 
and reaches its maximum at the point where a bound- 
ary layer flow along the plate surface begins. It then 
rapidly decreases to a quite uniform value in a region 
about half of the plate length. This is because the 
boundary layer does not last long downward over 
the plate surface, rather it meets a counter-direction 
stream on the surface, mixes with it and then deviates 
from the surface. The effect of the bottom-right recir- 
culating flow is to cause an increase in the local heat 
transfer coefficients. At the very end of the leeward 
surface, the local heat transfer again reaches a 
maximum, basically because of the rushing-out effect 

- - - w i n d w a r d  / 
- - - -  l e e w a r d  // / 

/ 

I i i i 

0 . 2  0 . 4  0 . 6  0 . 8  1 . 0  

x/(L+6 ) (case 4, Re=2000) 

1 5 0  

12o I 
- - -  windward 

90 - -  leedward ? 

_d 60 

0 t 
O.O 0 . 2  0 . 4  0 . 6  0 . 8  1 . 0  

x / (L+  6 )  (case 4, Re=lO00) 
Fig. 9. Local heat transfer coefficient distributions for case 4. 

of the fluid flow. As for the windward surface, the local 
heat transfer coefficient increases principally with the 
distance from the leading edge, due to the velocity 
acceleration effect occurring over the obliquely posi- 
tioned plate. In the region adjacent to the end of the 
windward surface it has the same variation pattern as 
in the start region of the leeward surface. 

The above-stated overall variation patterns of the 
local heat transfer coefficients for the windward and 
leeward surfaces hold for all the cases studied, with 
some differences mainly in the quantitative level. As 
expected, the increase in the Reynolds number or 
oblique angle leads to an increase in the local heat 
transfer coefficient. 

Comparison with experimental results 
The computed results for different cases are com- 

pared with the results of experiments made by Zhang 
and Lang [3], as shown in Figs. 11-13. Generally, 
most of the numerical results agree well with the exper- 
imental ones. However, it can be seen from Figs. 11 
and 12 that the discrepancy between the numerical and 
experimental results gradually becomes larger with the 
decrease in the oblique angle 0. This may be attributed 
to the local skewness of the grid network generated. 
As seen from Figs. 1 (b) and 2, in the regions of ABEF 
and CDHG, the generated grid network is approxi- 
mately orthogonal, while in the region BCGF, the 
network has rather high non-orthogonality, and so, 
the smaller the angle 0, the more severe the non- 
orthogonality of the network, thus leading to an 
increasing numerical error. However, as far as the 
pressure drop factor of Case 8 (Fig. 13) is concerned, 
the discrepancy is up to 30-40%, yet the agreement 
for Case 8 between the predicted Nusselt number and 
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the experimental one is quite good ; it is the authors' 
consideration that measurement uncertainty may also 
play a role. 

CONCLUDING REMARKS 

A parametric investigation on the fluid flow and 
heat transfer characteristics of periodically fully 
developed flows in arrays with uniform plate length 
and oblique angles to the flow direction has been 
performed numerically by using the multisurface 
transformation in the generation of the grid system. 
The following co:aclusions can be drawn. 

1. The grid networks generated by the multisurface 
transformation are appropriate, as witnessed by the 
good agreement between the predicted and measured 
results. However, for the cases of small oblique angles 
0 (say, less than ] 5°), the severe skewness of the gen- 

1 O0 
- -  Numerical ~ 
- - -  Experimental _ ~  

Z 
10 

L i , , , i  , , , , , , , , i  i 
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Re 

Fig. 11. Comparison of predicted Nusselt  number  with exper- 
imental results for cases 1-6. 

erated grid network in the inter-plate region may cause 
a larger numerical error. 

2. The mutual replacement method and the related 
interpolation technique proposed for implementing 
the periodic boundary condition in the exactly-one- 
cycle domain has been successfully extended to the 
computational space. 

3. There are two recirculating zones in one cycle, 
the top-left region and in the bottom-right region. 
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However,  at the pseudo-center-line, the flow is one- 
dimensional with the velocity component  normal to 
the line being very small. 

4. Both the pressure drop factor and the Nusselt 
number increase with increases in the Reynolds num- 
ber (beyond 100), the oblique angle and the ratio of  
L~ T o. This may be attributed to the enlargement of  the 
two recirculating zones. However,  when the Reynolds 
number exceeds a certain value, the per-cycle pressure 
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Fig. 13. Comparison of predicted results with experimental 
ones for cases 7 and 8. 
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Fig. 12. Comparison of predicted pressure drop factor with 
experimental results for cases 1-6. 

drop factor ceases to change with the Reynolds 
number. 

5. In the very low Reynolds number region 
(Re <~ 100), the fluid flow and heat transfer within the 
array behave as an internal laminar flow, char- 
acterized by the insensitivity of  the Nusselt number 
to Re and the nearly inverse proportionali ty of  the 
pressure drop factor to Re. 
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